谁发现了宇宙膨胀?(上篇)

伟大的天文学家埃德温·哈勃(Edwin Hubble,1889~1953)于1929年发表了一篇划时代的论文,研究了24个银河系外“星云”的速度与距离的关系,得到了著名的哈勃定律:距离越远,退行速度越大。因为这篇划时代的伟大论文,哈勃被誉为观测宇宙学之父。然而,哈勃的这篇论文至少有40%的功劳当属维斯托·斯里弗(Vesto Slipher,1875~1969)。正是他的工作,揭开了观测宇宙学的序幕。

后退的星云:斯里弗的划时代发现

斯里弗于1875年出生于美国印第安纳州,1901年毕业于印第安纳大学,然后被帕西瓦尔·洛威尔(Percival Lowell,1855~1916)所雇佣,进入洛威尔天文台。在天文台工作期间,斯里弗于1903年与1909年分别获得印第安纳大学授予的硕士与博士学位。

维斯托·斯里弗 图/Lowell Observatory

洛威尔对天上的星云很感兴趣,认为里面正在形成行星。因此他希望斯里弗去观测研究“旋涡星云”的光谱移动规律。所谓旋涡星云,就是形状像旋涡的星云。后来的观测与分析表明,当时所谓的“星云”有两种:一种是如今所说的真正的星云,由尘埃与分子云组成;另一种则是遥远的、类似于银河系的星系,旋涡星云即现在所说的漩涡星系。但在当时,大多数天文学家都没有认识到第二种可能性。

当时已经知道光也是一种波。当光源运动时,光波的波长就会变化,使得整个光谱发生移动。当光源远离观测者运动时,光波变长,称为“红移”;当光源朝着观测者运动时,光波变短,称为“蓝移”或者“紫移”。

1912年,37岁的斯里弗获得了重大突破,根据他得到的仙女星云的4条光谱,发现了仙女星云光谱的蓝移,据此计算出仙女星云靠近地球的速度大约是300千米/秒。到1914年,斯里弗累计测定出了15个星云的光谱移动的情况。当斯里弗在美国天文学会的会议上宣布了他的结果时,在场的所有人起立,鼓掌欢呼。这个重大成果为斯里弗带来了莫大的荣誉。他于1915年成为洛威尔天文台的代理台长,1916年成为执行台长。

到1917年,斯里弗获得了25个旋涡星云的光谱,其中4个出现蓝移,21个出现红移。到1922年,斯里弗已经测得41个旋涡星云的运动速度,其中有36个离我们而去,对应的最大速度达到了1800千米/秒。

截至1917年,斯里弗得到的25个星云的运动速度表(来源:Slipher, V. M. 1917, Proceedings of the American Philosophical Society, 56, 405)

由于仪器能力的限制,斯里弗在测量星系(即当时所说的旋涡星云)红移方面的探索已经无法更进一步了。但是,为什么这些星系中的绝大部分成员都在退行?理论家们在1917年之后的几年时间内得到了线索。

爱因斯坦与德西特的静止宇宙

1915年底,阿尔伯特·爱因斯坦(Albert Einstein,1879~1955)正式建立了广义相对论。1917年,他用广义相对论研究了宇宙学,他假定宇宙像一个球,体积有限,但没有边界。这是(现代)宇宙学的开端,2017年恰好是宇宙学诞生100周年。

爱因斯坦惊讶地发现,根据他的方程得到的宇宙是不稳定的。为消除这种看似荒谬的结果,他在方程中加了一个起到排斥力作用的常数项。它的数值非常小,但足以维持宇宙静止,这就是著名的“宇宙学常数”。这样,爱因斯坦的方程里就有了两个互相对立的成分在控制着宇宙:起吸引作用的物质和起排斥作用的宇宙学常数。二者互相平衡,宇宙保持静止。

1921年时的爱因斯坦 图/www.bhm.ch/de

接着,荷兰莱顿大学教授、莱顿天文台台长威廉·德西特(Willem de Sitter,1872~1934)在同年(1917年)提出了一个新的模型,所描述的宇宙也是闭合的,但省略掉物质的贡献,只留下宇宙学常数。在德西特模型描述的宇宙中,距离会导致时间流逝变慢。由于时间变慢,光波的波长变长,这也成了一种红移!而且越遥远的物体走过的路程越长,产生的红移也越大。因此,德西特说道:“结果,光振动的频率随着与坐标原点的距离的增大而降低,非常遥远的恒星或者星云的光谱线会系统性地朝着红端移动,给出了一个假的、大于零的径向速度。”在德西特看来,在这种宇宙中观测到天体的红移并不意味着天体真正的运动。

要记住,之前所说斯里弗测得的红移被认为是由于发光天体远离观测者导致的。而在德西特模型中,即使天体不运动,也会产生红移。后来的计算表明,在这种模型中,红移与距离的平方成正比。

德西特 图/photoarchive.lib.uchicago.edu

爱因斯坦与德西特一开始都认为自己的模型所描述的宇宙是静止的。只不过,德西特模型中的天体虽然不动,但发出的光会因为时间变慢而产生红移。这至少与观测到的一些星系的的红移一致。德西特希望能有更多的数据来验证自己的理论。

著名天文学家阿瑟·爱丁顿(Arthur Eddington,1882~1944)对德西特的宇宙学很感兴趣。在研究了德西特模型后,他认为这种模型中天体光谱的红移有可能来自宇宙学常数的贡献。因为这一常数起排斥力作用,会让放进去的“实验粒子”(天体)彼此加速远离,产生速度,于是就出现了红移。也就是说,天体真的动了,但宇宙本身依然没有动。爱丁顿曾经如此总结道:“爱因斯坦的宇宙有物质却没有运动;德西特的宇宙有运动却没有物质。”

对相对论与宇宙学的传播起到重要作用的爱丁顿

德西特模型所提出天体距离与红移的关系,是能够在观测中验证的,因此引起了观测天文学家的兴趣。但在当时,精确测定遥远天体的距离是一件困难的事情。德国的卡尔·维尔兹(Carl Wirtz,1876~1939)找到了一个粗略判断星云距离的方法:假设旋涡星云有着相同的大小,那么看上去越小的星系,距离地球就越远。根据这个近似方法定出的距离,再与星系的红移相比较,就可以验证德西特模型是否正确。维尔兹收集、研究了42个星云的红移,在1924年发表了论文《德西特的宇宙学模型与旋涡星云的运动》。同年,瑞典的克努特·伦德马克(Knut Lundmark,1889~1958)也发表了一篇论文,研究各种天体的红移(速度)与距离的关系,试图据此确定德西特宇宙的曲率。他在论文中说明:这些天体速度主要来自斯里弗精彩的光谱学工作。遗憾的是,这些研究对距离的确定都有很大误差,因此没有得到可靠的结果。

伦德玛克得到的速度-距离关系图(来源:Lundmark, K. 1924, MNRAS, 84, 747)

弗里德曼与勒梅特的动力学宇宙

1922年,俄国气象学家和数学家亚历山大·弗里德曼(Alexander Friedmann, 1888~1925)研究了爱因斯坦理论。他把宇宙学常数去掉,得到了一组方程,可以用来描述膨胀、收缩,甚至以“膨胀-收缩-膨胀……”的方式振荡着的宇宙,此后被称为“弗里德曼方程”。如果宇宙在膨胀的话,那其中的星系自然彼此远离。可惜的是,他没有把自己的理论与斯里弗的观测联系起来。

弗里德曼

爱因斯坦一开始认为弗里德曼搞错了。不过他很快认识到弗里德曼没有错,但还是认为这个模型虽然在数学上正确,但在物理上没什么意义。同一年,匈牙利数学家和物理学家科内留斯·兰措什(Cornelius Lanczos,1893~1974)也提出了类似的模型,但同样没有引起注意。1924年,弗里德曼又发表了一篇讨论动力学宇宙的论文,依旧被冷落。

接着上场的是比利时人乔治·勒梅特(Georges Lema?tre,1894~1966)。勒梅特17岁时进入卢万天主教大学,26岁博士毕业。然后进了神学院,3年后被任命为罗马天主教神父。1923年,他到剑桥大学学习天文,导师是爱丁顿。第二年到哈佛大学天文台学习,接着又转到麻省理工学院。在美国期间,他还访问了斯里弗和哈勃。1925年,勒梅特在《数学与物理杂志》发表了一篇论文,指出了德西特模型的几个缺点,并提出德西特的宇宙不是静止的。

勒梅特

1927年,33岁的勒梅特在拿到麻省理工学院的博士学位后成为卢万天主教大学的教授。同年,在不知道弗里德曼的工作的情况下(但却知道兰措什的工作并引用了),勒梅特重新推导出了弗里德曼方程。这篇文章的模型包含了宇宙学常数,以法语发表于一家不知名杂志《布鲁塞尔科学学会年鉴》。

在这篇论文中,勒梅特从理论上推导出:星系退行是宇宙膨胀导致的宇宙学效应,而且退行速度与距离成正比。这正是2年后被哈勃所发现的“哈勃定律”。

为与观测相结合,他间接引用了斯里弗的星系速度以及哈勃1926年一篇论文中提供的星系的视星等(并将其转换为距离)。根据这两组数据,他计算出速度与距离的比例常数,大约是575或625。而哈勃2年后得到的比例是500,二者惊人地接近,以至于有宇宙学家对此惊叹不已。其实根本不需要惊讶,因为他们的数据来源几乎完全一样:速度数据几乎都由斯里弗测出,距离数据本质上都是哈勃先后给出的。勒梅特没有画出速度-距离关系图,但根据他搜集列举的数据,后人做出了下面这张图,从中已经可以看出一些相关性,虽然依旧有较大的弥散。

后人根据勒梅特列出的数据,得到的速度-距离关系图。(来源:Duerbeck, H. W., & Seitter, W. C. 2000, Acta Historica Astronomiae, 10, 120)

完成这篇论文后,勒梅特将其寄给爱丁顿,但爱丁顿没有在意。爱因斯坦的评价则是:数学不错,但物理上很糟糕。爱丁顿的冷漠与爱因斯坦的差评,深深地打击了勒梅特。

1928年,霍华德·罗伯逊(Howard Robertson,1903~1961)发表了一篇论文,也研究了德西特的宇宙。他同样推导出“速度与距离成正比”的公式,然后比较斯里弗的红移数据与哈勃1926年的观测数据,得到空间曲率,将光速除以这个曲率半径值,可以轻易算出速度与距离的比例常数为463。

总结直到1928年时观测家与理论家对星系光谱红移的看法:斯里弗认为光谱红移表示星系在远离我们;德西特认为光谱红移是因为距离越远,时间越慢;弗里德曼不了解星云红移的观测结果,没有评论;勒梅特最激进,他认为光谱红移是因为空间自身在膨胀,导致星云远离,速度与距离成正比。罗伯逊也得到了速度与距离的比值的表达式。

因此,到1928年,宇宙膨胀及其规律已经被预言了。但此时却尚未被精确地验证,更不为绝大多数人所知。谁来验证勒梅特的理论?历史选择了哈勃和他的助手米尔顿·赫马森(Milton Humason,1891~1972)。

撰文/王善钦(美国加州大学伯克利分校天文系)

(本文发表于《科学世界》2017年8期)

来源:知乎 www.zhihu.com

作者:《科学世界》杂志

【知乎日报】千万用户的选择,做朋友圈里的新鲜事分享大牛。
点击下载